Cell Specific Analysis of Arabidopsis Leaves Using Fluorescence Activated Cell Sorting

نویسندگان

  • Jesper T. Grønlund
  • Alison Eyres
  • Sanjeev Kumar
  • Vicky Buchanan-Wollaston
  • Miriam L. Gifford
چکیده

After initiation of the leaf primordium, biomass accumulation is controlled mainly by cell proliferation and expansion in the leaves(1). However, the Arabidopsis leaf is a complex organ made up of many different cell types and several structures. At the same time, the growing leaf contains cells at different stages of development, with the cells furthest from the petiole being the first to stop expanding and undergo senescence(1). Different cells within the leaf are therefore dividing, elongating or differentiating; active, stressed or dead; and/or responding to stimuli in sub-sets of their cellular type at any one time. This makes genomic study of the leaf challenging: for example when analyzing expression data from whole leaves, signals from genetic networks operating in distinct cellular response zones or cell types will be confounded, resulting in an inaccurate profile being generated. To address this, several methods have been described which enable studies of cell specific gene expression. These include laser-capture microdissection (LCM)(2) or GFP expressing plants used for protoplast generation and subsequent fluorescence activated cell sorting (FACS)(3,4), the recently described INTACT system for nuclear precipitation(5) and immunoprecipitation of polysomes(6). FACS has been successfully used for a number of studies, including showing that the cell identity and distance from the root tip had a significant effect on the expression profiles of a large number of genes(3,7). FACS of GFP lines have also been used to demonstrate cell-specific transcriptional regulation during root nitrogen responses and lateral root development(8), salt stress(9) auxin distribution in the root(10) and to create a gene expression map of the Arabidopsis shoot apical meristem(11). Although FACS has previously been used to sort Arabidopsis leaf derived protoplasts based on autofluorescence(12,13), so far the use of FACS on Arabidopsis lines expressing GFP in the leaves has been very limited(4). In the following protocol we describe a method for obtaining Arabidopsis leaf protoplasts that are compatible with FACS while minimizing the impact of the protoplast generation regime. We demonstrate the method using the KC464 Arabidopsis line, which express GFP in the adaxial epidermis(14), the KC274 line, which express GFP in the vascular tissue(14) and the TP382 Arabidopsis line, which express a double GFP construct linked to a nuclear localization signal in the guard cells (data not shown; Figure 2). We are currently using this method to study both cell-type specific expression during development and stress, as well as heterogeneous cell populations at various stages of senescence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluorescent Contrast agent Based on Graphene Quantum Dots Decorated Mesoporous Silica Nanoparticles for Detecting and Sorting Cancer Cells

Background and Objectives: The inability of classic fluorescence-activated cell sorting to single cancer cell sorting is one of the most significant drawbacks of this method. The sorting of cancer cells in microdroplets significantly influences our ability to analyze cancer cell proteins. Material and Methods: We adapted a developed microfluidic device as a 3D in vitro model to sorted MCF-7 c...

متن کامل

Quantitative Proteomic Analysis of the Response to Zinc, Magnesium, and Calcium Deficiency in Specific Cell Types of Arabidopsis Roots

The proteome profiles of specific cell types have recently been investigated using techniques such as fluorescence activated cell sorting and laser capture microdissection. However, quantitative proteomic analysis of specific cell types has not yet been performed. In this study, to investigate the response of the proteome to zinc, magnesium, and calcium deficiency in specific cell types of Arab...

متن کامل

Fluorescence-activated cell sorting for analysis of cell type-specific responses to salinity stress in Arabidopsis and rice.

Fluorescence-activated cell sorting (FACS) provides a rapid means of isolating large numbers of fluorescently tagged cells from a heterogeneous mixture of cells. Collections of transgenic plants with cell type-specific expression of fluorescent marker genes such as green fluorescent protein (GFP) are ideally suited for FACS-assisted studies of individual cell types. Here we describe the use of ...

متن کامل

Meselect – A Rapid and Effective Method for the Separation of the Main Leaf Tissue Types

Individual tissues of complex eukaryotic organisms have specific gene expression programs that control their functions. Therefore, tissue-specific molecular information is required to increase our understanding of tissue-specific processes. Established methods in plants to obtain specific tissues or cell types from their organ or tissue context typically require the enzymatic degradation of cel...

متن کامل

Knockdown of mitofilin inhibits autophagy and facilitates starvation-induced apoptosis in HeLa cells

Objective(s): Mitofilin contributes to the maintenance of mitochondrial structure and functions. This study was undertaken to determine the mechanisms underlying its regulation of apoptosis.  Materials and Methods: Mitofilin was knockdowned by specific short hairpin RNA (shRNA) and the stable HeLa cell clone was selected. The autophagy a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2012